Problem 5 of 5.3

Wednesday, October 27, 2021 1:47 PM

If
$$p_1, p_2, \dots, p_n, g$$
 are analytic at as then (x) has a unique analytic solution $y = \sum q_n(n-r_0)^n$.

is continuous.

En:
$$ln(x^{2}-1)$$
 is analytic at any $x_{0} < 1$ or >1 .
radius of $Cnnv. = min \{2n-11, 2n+11\}$
En: $xln(1-x)y' + e^{2}y = 12$, $y(\frac{1}{3}) = 1$.
 $y' + \frac{e^{2}}{2ln(1-x)}y = \frac{\sqrt{2}}{2ln(1-x)}$
analytic analytic $dx = \frac{\sqrt{2}}{2ln(1-x)}$
 $dx = \frac{\sqrt{2}}{2ln(1-x)}$

$$y = \sum a_n (n-\frac{1}{3})^n \longrightarrow radius of convergen $2\frac{1}{3}$.$$