When does the power series method war?

$$
\left.\begin{array}{l}
y^{(n)}+p_{1}(2) y^{(n-1)}+\ldots+p_{n}(x) y=g(x), \tag{k}\\
y\left(x_{0}\right)=y_{0}, \ldots, y^{(n+1)}\left(x_{0}\right)=y_{0}^{(n-1)}
\end{array}\right\}
$$

If $p_{1}, p_{2}, \ldots, p_{1}, g$ are analytic at as then $(*)$ has a unique analytic oblation $y=\sum a_{n}\left(x-r_{0}\right)^{n}$.

An elementary function (polynomial, fractional, exponential, logarithmic, tryonometrii and the combinations) is analytic at any point where it is continuous.
En: $\quad \ln \left(x^{2}-1\right)$ is analytic at any $x_{0}<-1$ or >1.

堅:

$$
01 / 31
$$

$$
\begin{aligned}
& x \ln (1-x) y^{\prime}+e^{x} y=\sqrt{x}, \quad y\left(\frac{1}{3}\right)=1 . \\
& \leadsto y^{\prime}+\underbrace{\frac{e^{x}}{x \ln (1-x)}}_{\text {anal } 12} y=\underbrace{\frac{\sqrt{x}}{\lambda \ln (1-x)}}_{\text {analytic }} \\
& \text { at } x_{0}=1 / 3 \quad \text { at } x_{0}=1 / 3 \\
& y=\sum a_{n}\left(x-\frac{1}{3}\right)^{n} \rightarrow \text { radius of converge } \geqslant \frac{1}{3} \text {. }
\end{aligned}
$$

